
D. Lucy, 1 R. G. Aykroyd, 2 A. M. Pollard, 3 and T. Solheim 4 

A Bayesian Approach to Adult Human Age Estimation from 
Dental Observations by Johanson's Age Changes 

REFERENCE: Lucy, D., Aykroyd, R. G., Pollard, A. M., and 
Solheim, T., "A Bayesian Approach to Adult Human Age Esti- 
mation from Dental Observations by Johanson's Age Changes," 
Journal of Forensic Sciences, JFSCA, Vol. 41, No. 2, March 1996, 
pp. 189-194. 

ABSTRACT: Much of the data which appears in the forensic and 
archaeological literature is ordinal or categorical. This is particularly 
true of the age related indicators presented by Gustafson [1] in his 
method of human adult age estimation using the structural changes 
in human teeth. This technique is still being modified and elabo- 
rated. However, the statistical methods of regression analysis 
employed by Gustafson and others are not particularly appropriate 
to this type of data, but are still employed because alternatives have 
not yet been explored. This paper presents a novel approach based 
upon the application of Bayes' theorem to ordinal and categorical 
data, which overcomes many of the problems associated with regres- 
sion analysis. 
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Since 1950, when Gustafson first published his seminal paper 
(1) on adult human age estimation using morphological changes 
in the structure of teeth, there have been many papers that have 
adopted and refined Gustafson's basic methodology. 

Traditionally, efforts have concentrated on improvements in the 
scoring system and the variables used to estimate age. Gustafson 
used six variables: attrition, secondary dentine apposition, peri- 
odontal recession, root resorption and root dentine translucency 
(1). For these, Gustafson awarded a score on a scale of zero to 
three based upon the visual severity of the change, and employed 
linear regression to calculate an equation that linked age to the 
sum of points for all the variables for each tooth. Dalitz (2) divided 
the age changes observed by Gustafson into five stages. Dalitz 
used multiple regression and found that cementum build-up and 
root resorption could be discarded with no effect upon the accuracy 
or precision of age estimates. Bang and Ramm (3) used only one 
of the six variables, root dentine translucency. They found that 

tResearch Student, Department of Archaeological Sciences, University 
of Bradford, Bradford, West Yorkshire, England. 

2professor, Department of Statistics, School of Mathematics, University 
of Leeds, Leeds, West Yorkshire, England. 

3Professor, Department of Archaeological Sciences, University of Brad- 
ford, West Yorkshire, England. 

4professor, Department of Oral Pathology and Section for Forensic 
Odontology, Blindern, Oslo, Norway. 

Received for publication 29 May 1995; revised manuscript received 10 
Aug. 1995; accepted for publication 11 Aug. 1995. 

accurate estimates of age could be made by measuring on a continu- 
ous scale the extent of the translucent root zone. They used curvilin- 
ear regression to derive for each tooth locus an expression for the 
relationship between the extent of the translucent zone and age. 
Johanson (4) used all of Gustafson's age related changes, but 
scored using half stages, which he demonstrated could be detected. 
He also used multiple regression to calculate a regression line 
from which ages for unknown individuals could be estimated. 
Burns and Maples (5) used a points system based upon Gustafson's 
but worked on a basis of using separate regression lines for each 
tooth locus. In addition, they took into account other factors such 
as sex, age, and whether the individual had a history of periodontal 
disease. Maples (6) used multiple regression to examine which of 
the age related changes were least correlated with age the intention 
being to achieve the same success at estimating age, but with 
fewer parameters. Maples found that of the age-related changes, 
root resorption was by far the least related, and should not be 
used for age estimation. Root dentine transparency and secondary 
dentine were considered to be the best age indicators and the 
second molar was said to be the best tooth to use. Kashyap and 
Koteswara-Rao (7) followed Bang and Ramm in measuring the 
extent of root dentine translucency, but included secondary dentine, 
attrition and cementum apposition measured on similar continuous 
scales. They calculated separate regression lines for each type of 
tooth locus as a function of age, then calculated the age for an 
individual by taking a mean of the separate age estimates. 

Despite all the improvements made to adult age estimation by 
modification of the variables used and the way in which they are 
scored, little attention has been paid to the statistical means by 
which adult age estimates are derived. With the exception of the 
work of Bang and Ramm (3) and Kashyap and Koteswara Rao 
(7) all the techniques outlined rely on the use of poInts awarded 
to the extent of  the age related change and regression analysis. 
The use of regression analysis for categorical data may be responsi- 
ble for some of the problems encountered by those engaged in 
this field of research and has possibly led to some of  the criticisms 
(8,9) of Gustafson's (1) original work, which focused upon Gustaf- 
son's estimate of the error associated with the technique. 

The Assumptions of Regression Analysis 

There are a number of assumptions about the nature of the data 
treated by regression analysis. These are: 

1. Variables give independent information about age. This 
means that the age related changes cannot be dependent 
physically upon each other. The changes can be correlated 
with each other, and this would be expected given that they all 
change systematically with age, but increase in one variable 
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cannot directly cause change in another. This means we 
would expect partial correlations between the age changes 
to approach zero when controlled for age. 

2. Variables vary continuously with age. A continuous variable 
has to be theoretically capable of adopting an infinite number 
of values, such as the linear measurement of root dentine 
translucency used by Bang and Ramm (3). However, the 
seven stages adopted by Johanson (4) for age related variables 
comes nowhere near to approximating a continuous variable, 
and is more properly thought of as an ordinal variable. 

3. The error distribution about the mean of any variable for a 
given age is normal, which essentially means that the vari- 
ables are multivariate normal, or unl-variate normal if only 
one variable is being used. This means that any estimation 
of error on an unknown age will be normally distributed 
about its predictive value. This is an additional constraint 
that may not be completely fulfilled when the data are exam- 
ined. A corollary of this assumption is that the predicted 
variable should be continuous. So, even were some form of 
inverse regression to be considered appropriate (9), where 
age change is regressed as the response variable against age 
change, which is the controlling variable; the age change 
should be on a continuous scale. 

4. When linear regression, either multivariate or univariate, is 
carded out, there is the assumption that the variable changes 
linearly with age. This does not apply to curvilinear regres- 
sion as used by Bang and Ramm (3). 

5. When summation methods are used, such as by Gustafson 
(1), it is assumed that all the variables are contributing the 
same amount of information about age. This has subsequently 
been demonstrated to be untrue by Johanson (4). 

Of the procedures described, Gustafson (1) implicitly makes all 
five assumptions, as do Bums and Maples (5). Dalitz (2) and 
Johanson (4) make the first three assumptions. Maples (6) makes 
the first four assumptions. Because some, or all of, those assump- 
tions have been made, regression analysis does not inevitably lead 
to estimated ages that are necessarily inaccurate or imprecise. 
However, neither is there any rationally justifiable reason for its 
use in situations that involve categorical or ordinal data. The plain 
fact is that suitable non-parametric predictive regression techniques 
have not, as yet, been applied to this field. 

Age Estimation and Bayes' Theorem 

Alternatives to regression analysis do exist. For some time non- 
parametric methods have been used in the estimation of the age 
structure of a population. For example, Konigsberg and Franken- 
berg (10) describe the potential of an iterative expectation maximi- 
zation algorithm for the accurate estimation of age structures for 
human populations. However, the forensic or archaeological scien- 
tist is more concerned with the age of individuals in a population 
and one of the elements used as a basis for Konigsberg and Frank- 
enberg's work can be adapted for estimating the age of individuals. 
This is the theory of probability called Bayes' theorem. The Bayes- 
ian paradigm involves three important concepts: prior probability, 
likelihood and posterior probability (11; pp. 57--60). 

The prior probability is the initial assignment of the probability 
of any hypothesis being true before experimental evidence is con- 
sidered. In age estimation this would be the probability of an 
individual belonging to a defmed age group given no information 
(other than that the individual is similar to the reference sample). 

This probability is given the notation P (A3, which is the probability 
of the individual having an age which falls into age category i. 

The likelihood is the conditional probability of the observed 
information, L given the hypothesis is true and is given the notation 
P (IIAi). 

The posterior probability is the conditional probability of a 
hypothesis being true given the value of the observed information 
and in notation is P (Aiif). This is the probability that an individual 
belongs to age category i after taking into account both prior 
information from the reference sample and observed evidence from 
the indicator variables. 

Bayes' theorem states that the posterior probability is propor- 
tional to the prior probability multiplied by the likelihood. The 
constant of proportionality is given by the reciprocal of the sum 
over all age categories of the product of corresponding prior proba- 
bilities and likelihoods. Using the notation described above, and 
where j refers to all i's, this can be written: 

P(AI) X P(IIAi) 
P(AiI1) = ~ P(Aj) • P(IIAj)" (1) 

Of course in practice we might record more than one piece 
of information in the application considered in this paper five 
measurements were taken. Hence, in general we might consider 
n measurements and write our observed information as I = {Ib 
12 . . . . .  In}. It can be shown that the generalization of Bayes' 
theorem for this situation is; 

P(Ail {I[,/2 . . . . .  In}) = 
P({lb/2 . . . . .  In} IAi)P(Ai) 

e({t,, 6 . . . . .  /~1 IAj)P(Aj) 
�9 (2) 

By assuming conditional independence of the observed measure- 
ments given the age category, Equation 2 can be re-written; 

P(Ai [ {11, I2 . . . . .  In}) 

P(II I Ai)P(I2 I Ai) "'" P(I~ I Ai)P(Ai) 
- ~ -  , 

P(/~ I Aj)Pq2 I Aj ) - . .  P G  I Aj)P(Aj) 
(3) 

All probabilities can then be estimated from the observed data. 
For ease of computation we may first introduce a quantity p(i) 
which is the numerator in Equation 3, that is; 

P(/) = P(Ii IAi)P(I2 IAi) " "  P(I, IAi)P(Ai). (4) 

The denominator in equation (3) being given by; 

oO). (5) 
y=l 

and hence we can recover P(AiI{II, I2 . . . . .  In}) using; 

p(i) (6) P(Ai[ {ll, I2 . . . . .  In}) = ~ p( j ) .  

Again, in practice we will estimate each of the probabilities in 
Equation 4 by an appropriate proportion from the reference sample, 
for example; 
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n(ll, Ai) 
P(lt I Ai) = - -  (7) 

n(Ai) 

where n(I~, Ai) is the number of cases in the reference sample with 
the particular indicator variable 11 and age group i, and similarly 
n(Ai) is the total number in age group i. In addition, the total 
number of cases in the reference sample is N. Using this expression 
Equation 4 can be re-written; 

n(Ii, Ai) n(I2, Ai) n(I,, Ai) n(Ai) 
P(i) = n(Ai) n(Ai) n(Ai) N "  (8) 

This, along with Equation 5, yields a posterior probability distri- 
bution for the age of an individual based upon a reference sample 
after all observed information has been taken into account. The 
only assumption made by this method of treating multivariate 
ordinal data is that all the indicator variables are conditionally 
independent given age. 

An Example of Bayesian Prediction 

Data on second maxillary incisors was taken as a subset of data 
previously published (12-15). Data from left maxillary second 
incisors and right maxillary second incisors were pooled since 
previous work ( 12-15) showed no differences in the rate of develop- 
ment on contralateral teeth. All teeth came from separate individuals, 
obviating autocorrelation between measurements. The variables 
used were picked for their strong relationship to chronological age 
and to avoid dependence of measurement. They were secondary 
dentine, periodontal recession, apical translucency, root color and 
the surface roughness of the cementum. All variables were scored 
on the incremental scale of Johanson (4), with the notation of 
color estimate and surface roughness having been described by 
Solheim (16,17). 

Table 1 gives a cross tabulation of these data based upon age 
group and severity of change. For example: the first cell for second- 
ary dentine has a value of zero. This means that there are no people 
in the reference sample who have a secondary dentine score of 
zero and who are aged between 11 and 20. The cell to the right 
has a value of one; there was one person in the reference sample 
with secondary dentine score of value one who was aged between 
11 and 20. The row totals are the number of individuals in each 
age group in the reference sample. 

Were there to be an individual who had the following scores: 
secondary dentine 1, periodontal recession 2, root dentine translu- 
cency 3, color estimate 2, root surface roughness score 2, we can 
look up from Table 1 suitable values to insert into Equation 8. 
For example p(21 < age < 30) is calculated by looking at the 
column which corresponds to the observed value of secondary 
dentine, in this case 1, and taking that value that corresponds to 
the 21-30 age group, this value is 4. This is then divided by the 
total number of individuals from the reference sample who belong 
to that age group, which is the row total, in this case 7. Again, 
for periodontal recession we look up the value in the column which 
corresponds to the observed score, this time the column headed 
2, and age group 21-30; this value is 2, which is then divided by 
the row total, 7. This process is repeated for all variables. The 
final term in Equation 8 is the number of  people in the reference 
sample in the age group, the row total, divided by the total number 
in the reference sample, here 71. 

4 2 2 5 3 ~1 p ( 2 1 < a g e < 3 0 ) = ~ • 2 1 5  = 1.41 X 10 -3 

All these values are then multiplied together to produce p(i) for 
that individual for that age group. A p(i) value is then calculated 
as above for each age group and these are summed to produce the 
denominator of Equation 5. Each fl(i) is then divided by this sum 
to yield posterior probabilities of  that individual belonging to each 
age group. 

Age (i) p(i) P(AilII . . .  15) 

11-20 0 0 
21-30 1.41 • 10 -3 0.274 
31-40 1.23 • 10 -3 0.239 
41-50 2.51 • 10 -3 0.487 
51-60 0 0 
61-70 0 0 
71-80 0 0 
81-90 0 0 

~p(i) = 5.146 x 10 -3 

We can therefore have 27% confidence that the individual is 
between 21 and 30 years of age, a 23% confidence that the individ- 
ual is between 31 and 40, and a 48% confidence that they are 
between 41 and 50. There is 0% confidence that this individual 
belongs to any other age group. 

As an illustration the data from 71 maxillary second incisors 
used in Table 1 had ages estimated for them using both multiple 
regression and the Bayesian prediction outlined above. As it would 
be incorrect to make estimates for individuals which also appeared 
in the reference sample, it was decided to use a jackknife resam- 
piing strategy (18). This involves removing each case in turn, 
calculating a regression line or cross tabulation on the basis of the 
other cases in the reference sample, and then estimating the age 
of the separated case. This routine is run for all cases in the sample. 
So that the results of Bayesian prediction can be compared with 
parametric multiple regression, the median age was taken as an 
analogue to the mean suggested by parametric regression. This is 
the age corresponding to the 50 th percentile of the posterior proba- 
bility distribution, and was calculated by linear interpolation. Like- 
wise upper and lower confidence limits were calculated which 
were the ages corresponding to the 2.5 and 97.5 percentiles of the 
area of the probability distribution. 

The scores, estimated ages and 95% confidence intervals were 
calculated by parametric multiple regression and Bayesian predic- 
tion for all 71 individuals using routines devised by the authors. 
The results are presented in Table 2. 

The mean of the absolute errors for all cases can be taken as a 
measure of accuracy. For the Bayesian prediction analysis this was 
7.0 years; for parametric multivariate regression the mean of the 
absolute error was 7.8 years. The average 95% confidence interval 
for Bayesian prediction was 19.4 years whereas the average 95% 
confidence interval for parametric regression was 37.9 years. 

Discussion 

The Bayesian analysis mentioned compares well with parametric 
multiple regression in this instance, being slightly more accurate 
and placing predictions within 95% confidence limits, which are 
on average half as wide as parametric multiple regression. The 
reason for this marked improvement in the confidence interval is 
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TABLE 1--Cross-tabulation by age and score for 71 maxillary second incisors. 

Secondary Dentine 
Age Score by Johanson 

Group 0 1 2 3 4 5 6 Row Total 

11-20 0 1 0 0 0 0 0 1 
21-30 0 4 0 3 0 0 0 7 
31--40 0 3 7 2 1 1 0 14 
41-50 0 3 4 2 5 2 0 16 
51--60 0 0 2 4 1 1 1 9 
61-70 0 0 0 1 3 1 1 6 
71-80 0 0 0 4 3 4 4 15 
81-90 0 0 0 0 1 1 l 3 

Root Dentine Translucency 
Score by Johanson 

Age Group 0 1 2 3 4 5 6 Row Total 

11-20 1 0 0 0 0 0 0 1 
21-30 0 2 2 2 1 0 0 7 
31--40 0 0 6 4 4 0 0 14 
41-50 0 1 0 9 3 3 0 16 
51--60 0 0 0 3 2 4 0 9 
61-70 0 0 0 0 1 4 1 6 
71-80 0 0 0 0 2 10 3 15 
81-90 0 0 0 0 0 2 1 3 

Periodontal Recession 
Score by Johanson 

Age Group 0 1 2 3 4 5 6 Row Total 

11-20 1 0 0 0 0 0 0 1 
21-30 1 4 2 0 0 0 0 7 
31--40 0 1 5 4 3 0 1 14 
41-50 0 0 4 7 3 1 1 16 
51---60 0 0 1 6 2 0 0 9 
61-70 0 0 1 3 1 1 0 6 
71-80 0 0 8 3 4 0 0 15 
81-90 0 0 1 1 1 0 0 3 

Color Estimate 
Score by Solhelm 

Age Group 1 2 3 4 5 Row Total 

11-20 1 0 0 0 0 1 
21-30 2 5 0 0 0 7 
31-40 4 8 1 1 0 14 
41-50 0 12 4 0 0 16 
51--60 0 2 7 0 0 9 
61-70 0 0 2 3 1 6 
71-80 0 1 3 9 2 15 
81-90 0 1 1 1 0 3 

Root Surface Roughness Estimate 
Score by Solhelm 

11-20 0 1 0 0 1 
21-30 2 3 2 0 7 
31--40 1 7 6 0 14 
41-50  0 9 6 1 16 
51-60 0 8 1 0 9 
61-70 0 1 5 0 6 
71-80 0 1 9 5 15 
81-90 0 0 3 0 3 

Age Group 1 2 3 4 Row Total 
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TABLE 2--Ages, scores and estimated ages for 71 second maxillary incisors. 

Individual ages and scores 
Estimated ages and confidence intervals 

by Bayesian prediction 
Estimated ages and confidence intervals 

by Parametric regression 

Second- 
Known ary 

age dentine 

Lower Esti- Upper 
Perio- Root 95% con- mated 95% con- 
dontal Trans- Color roughness fidence (median) fidence 

recession leucency estimate estimate limit age limit 

Deviation Lower Upper Deviation 
of estimate 95% con- Esti- 95% con- of estimate 
from real fidence mated fidence from real 

age limit age limit age 

17 
22 
24 
24 
27 
28 
30 
30 
31 
31 
32 
34 
34 
35 
35 
36 
37 
37 
38 
39 
39 
39 
41 
41 
43 
43 
44 
44 
44 
46 
47 
47 
47 
47 
48 
48 
48 
50 
52 
53 
55 
57 
57 
58 
58 
59 
59 
65 
66 
66 
68 
68 
68 
72 
73 
73 
74 
74 
74 
75 
75 
76 
76 
77 
79 
79 
79 
79 
80 
80 
86 

0 0 1 2 21.49 25.95 30.40 
1 2 2 2 21.72 28.29 39.36 
1 3 1 2 21.80 29.07 39.62 
1 1 2 3 21.49 25.95 30.40 
1 4 2 2 31.49 35.95 40.40 
0 3 1 1 21.75 28.62 39.49 
2 1 2 1 21.49 25.95 30.40 
2 2 2 3 27.50 35.54 40.36 
2 3 1 3 21.72 28.29 39.36 
4 2 2 2 31.99 41.17 58.48 
2 3 2 2 22.58 43.30 56.83 
2 4 2 3 31.79 38.97 49.79 
6 2 2 2 31.56 36.69 47.09 
3 2 1 2 31.49 35.95 40.40 
4 2 2 3 31.49 35.95 40.40 
2 2 2 3 21.85 29.59 39.73 
1 4 3 1 22.23 51.23 59.93 
3 4 2 2 38.47 52.47 60.08 
3 3 1 2 31.49 35.95 40.40 
2 4 2 2 31.90 40.10 51.01 
4 2 4 3 31.49 35.95 40.40 
3 3 1 3 34.80 45.60 54.34 
2 1 2 2 21.49 25.95 30.40 
2 3 2 3 22.43 34.99 49.06 
2 3 2 3 33.57 44.80 50.37 
6 5 3 2 49,16 55.65 60.37 
3 3 3 2 42,02 52.92 60.10 
3 3 2 3 32.35 43.10 50.12 
4 4 2 4 71,49 75.95 80.40 
3 3 2 3 32.08 41.86 50.62 
3 4 3 2 42.83 55.42 66.42 
2 3 2 2 22.34 35.61 57,44 
3 3 2 2 32.51 44.45 58.07 
5 5 3 3 61.49 65.95 70.40 
3 3 2 2 32.51 44.45 58,07 
4 5 2 2 43.11 55.02 76,42 
4 3 2 2 35.05 45.82 56,04 
3 4 2 3 32.00 41.24 75.80 
3 3 3 2 42.89 54.74 60.28 
3 3 2 2 32.80 44.20 50.60 
2 4 3 2 32.72 45.08 77.24 
3 5 2 2 41.58 46.86 57.73 
3 4 3 3 41.21 65.50 79.12 
3 5 3 2 61.70 68.06 79.24 
4 5 3 2 46.95 56.31 75.31 
3 5 3 2 42.00 61.22 70.69 
4 3 3 2 41.13 53.20 60.13 
2 5 3 3 52.69 75.33 80.34 
5 4 5 2 41.63 47.39 78.70 
3 6 4 3 71.49 75.95 80.40 
3 5 4 3 61.91 70.15 79.82 
4 5 4 3 71.49 75.95 80.40 
3 5 3 3 43.48 65.18 79.07 
4 5 4 3 63.84 74.90 80.30 
2 5 3 3 50.38 73.39 80.15 
2 6 4 4 71.49 75.95 80.40 
4 6 5 4 71.49 75.95 80.40 
3 5 2 3 51.49 55.95 60.40 
4 5 4 3 61.88 69.86 79.78 
2 5 5 2 61.49 65.95 70.40 
3 5 4 4 71.49 75.95 80.40 
2 5 4 4 71.49 75.95 80.40 
2 4 4 3 40.29 74.29 80.24 
2 4 3 3 56.68 72.61 80.07 
2 5 3 3 50.38 73.39 80.15 
2 5 4 3 66.19 75.42 80.35 
4 5 4 3 61.88 69.86 79.78 
3 6 4 4 71.49 75.95 80.40 
2 5 3 3 52.69 74.46 80.26 
4 6 4 3 64.31 75.07 80.32 
3 5 2 3 41.57 46.82 75.74 

8.95 -3 .79  16.14 36,06 0.86 
6.29 13.76 32.44 51.12 10.44 
5.07 13.34 32.22 51,11 8.22 
1.95 11.67 31.14 50.62 7.14 
8.95 25.29 43.98 62.68 16.98 
0.62 15.33 35.31 55.30 7.31 
4.06 7.62 27.25 46.87 2.75 
5.54 22.64 41.25 59.86 11.25 
2.71 16.01 35.04 54.08 4.04 

10.17 23.42 42.81 62.20 11.81 
11.30 24.03 42.28 60.54 10.28 
4.97 30.71 48.97 67.23 14.97 
2.69 10.70 30.85 51.00 3.15 
0.95 8.73 27.36 46.00 7.64 
0.95 17.54 36.57 55.60 1.57 
6.41 15.83 34.72 53.61 1.28 

14.23 28.98 48.69 68.40 11.69 
15.47 28.68 47.02 65.36 10.02 
2.06 10.82 29.62 48.42 8.38 
1.10 26.14 44.72 63.30 5.72 
3.06 29.23 49.13 69.02 10.13 
6.60 23.72 42.96 62.20 3.96 

15.06 5.74 24.29 42.84 16.71 
6.01 21.27 40.03 58.80 0.97 
1.80 30.25 48.89 67.52 5.89 

12.65 35.08 55.15 75.23 12.15 
8.92 31.35 49.90 68.45 5.90 
0.90 20.41 39.16 57.92 4.84 

31.95 35.73 54.99 74.25 10.99 
4.14 23.62 42.14 60.66 3.86 
8.42 36.81 55.16 73.50 8.16 

11.39 23.42 41.80 60.19 5.20 
2.55 19.95 38.26 56.57 8.74 

18.95 45.59 63.96 82.34 16.96 
3.55 19.95 38.23 56.51 9.77 
7.02 38.97 58.08 77.18 10.08 
2.18 24.51 43.25 62.00 4.75 
8.76 37.73 56.50 75.27 6.50 
2.74 28.11 46.57 65.04 5.43 
8.80 20.00 38.06 56.12 14.94 
9.92 34.04 52.57 71.10 2.43 

10.14 29.20 48.21 67.21 8.79 
8.50 43.16 61.66 80.15 4.66 

10.06 47.66 66.59 85.53 8.59 
1.69 37,82 56.64 75.46 1.36 
2.22 41,61 60.22 78.82 1.22 
5.80 27,07 45.43 63.79 13.57 

10.33 42.97 61.55 80.12 3.45 
18.61 47,54 67.66 87.78 1.66 
9.94 56,60 75.19 93.77 9.19 
2.15 50.89 69.41 57.92 1.41 
7.94 56.13 74.84 93.54 6.84 
2.82 45.43 63.81 82.18 4.19 
2.90 52.97 71.54 90.12 0,46 
0.39 42.79 61.15 79.50 11.85 
2.94 63.83 82.83 101.84 9.83 
1.94 61.90 81.68 101.47 7,68 

18,06 43.56 62.73 81.91 11,27 
4.14 49.97 68.50 87.02 5,50 
9,06 51.08 70.94 90.81 4.06 
0,94 50.70 69.78 88.86 5.22 
0,06 60.48 79.83 99.18 3.83 
1.71 47.99 66.76 85.54 9.24 
4.39 44.83 63.61 82.39 13.39 
5.61 42.82 60.85 78.88 18.15 
3.58 53.70 72.36 91.03 6.64 
9.14 49.88 68.26 86.64 10.74 
3.06 65.53 84.55 103.57 5.55 
5.54 48.32 66.65 84.99 13.35 
4.93 60.84 79.63 98.43 0.37 

39.18 39.24 56.52 73.80 29.48 
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that in cases where the probability is not evenly distributed about 
a mean then the parametric multiple regression has to adopt a 
wider confidence interval. The Bayesian prediction outlined here 
makes no such assumption about the distribution of probability 
about the age estimate so it can predict age ranges which vary 
according to the empirical posterior probability distribution, 
reflecting a more realistic case-by-case approach to the estimation 
of error. 

Although in the case of the 71 maxillary incisors above, where 
median estimates of age have been calculated for comparative 
discussion, age estimates using the Bayesian predictive model are 
given as a probability assigned to each arbitrarily def'med age 
group, not as a mean estimate of age with an evenly distributed 
error around that mean. This approach has the advantage that in 
cases which are genuinely ambiguous, for instance if  an individual 
has suffered heavy periodontal disease, or has anomalously high 
root dentine translucency (3; p. 27), then the probability distribution 
will be bi-modal. These cases can be picked out as unreliable 
and subjected to further examination. In similar ambiguous cases 
parametric multiple regression will assign a mean age, which lies 
somewhere between the two ages suggested by the data giving no 
obvious clue that something may be amiss. 

The problem with the Bayesian prediction analysis given above 
is that only 79% of cases does the known age fall into the 95% 
confidence intervals. Parametric regression places over 99% of 
known ages within the 95% confidence interval. This suggests 
confidence interval may be slightly too small, which could be a 
feature of this particular data set. However, one drawback with 
this form of analysis is that an accurate estimate of the distribution 
of likelihoods can only be obtained when the reference sample is 
large. The cross-tabulation shown in Table 1 has many cells that 
are empty, or have a small number of entries in them. 

Conclusions 

It is evident that the non-parametric method of analyzing ordinal 
data as used here in connection with pointsbased dental methods 
of age estimation is more robust and appropriate than the traditional 
application of regression models to categorical/ordinal data for 
which there is no statistically rational justification. This is because 
valid error estimates on regression models require normally distrib- 
uted variables. The ordinal/categorical measurements used in Gus- 
tafson's aging technique do not approximate well to a continuous 
variable such as age, and regression techniques can entail a loss 
of information which obscures the real probability distribution of 
any predicted value. With the Bayesian prediction procedure the 
output is a probability distribution, not a mean with an artificial 
standard deviation, which means that there is little loss of predictive 
information and that cases which genuinely carry ambiguities (such 
as bimodal probability distributions) can be singled out for fur- 
ther examination. 

Because none of the assumptions inherent in conventional 
regression techniques are required by the Bayesian approach, the 
predictions are better than those made by conventional regression 
techniques in that their average absolute error can be lower, and 
the 95% confidence intervals are smaller. 

Provided the assumption that variables are conditionally inde- 
pendent is not violated, an assumption that is also inherent in all 

regression models, this method should prove to be capable of 
further development into a powerful statistical technique appro- 
priate for use in other fields where the forensic and archaeological 
scientist has to work with empirically derived categorical and/or 
ordinal data. An obvious further extension is into the area of 
skeletal indicators of age at death, possibly combined with the 
best of the dental indicators. Further work may also consist of 
devising means by which more accurate estimates of likelihoods 
can be obtained in situations where the reference samples may be 
small. We believe that the Bayesian approach has unlimited poten- 
tial in this crucial area of interest to both archaeological and 
forensic scientists. 
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